Ectomycorrhizal Fungal Communities Associated with Dominant Tree Species in a Subarctic Limestone Area
Asian Soil Research Journal, Volume 7, Issue 2,
Page 34-45
DOI:
10.9734/asrj/2023/v7i2129
Abstract
Limestone soils are stressful for plant growth. Plant-associated ectomycorrhizal (ECM) fungi may promote plant growth under stressful conditions, yet available information on ECM fungi in limestone areas is scarce. We investigated the ECM fungal communities associated with dominant tree species in a subarctic limestone area. We aimed to determine whether the ECM species differed between calcareous and non-calcareous areas, and the distribution property common to ECM fungi in limestone areas. Morphological characterization and DNA sequencing of root tips identified 57 ECM taxa. The ECM fungal compositions in the calcareous area differed from those in the non-calcareous area, even when comparisons were made between fungi on the same tree species. Rather, when ECM species were grouped at the genus level, they tended to be dissimilar between calcareous areas and between non-calcareous areas. Especially, Tomentella spp. and Sebacina spp. tended to be present more frequently in calcareous areas, while Cenococcum geophilum and Russula spp. tended to be present more frequently in non-calcareous areas.
- Alkaline soil
- calcareous soil
- subalpine forest
- ectomycorrhiza
- basidiomycete
- ascomycete
- Tomentella
- Sebacina
How to Cite
References
Ford DC, Williams PW. Karst geomorphology and hydrology. Chapman & Hall; 1989.
Marschner H. Mineral nutrition of higher plants. Academic Press: New York, NY, USA; 1995.
Samaneh R, Mohammad RM, Mehran S, Jiri S. Transport of silver nanoparticles in intact columns of calcareous soils: The role of flow conditions and soil texture. Geoderma. 2018;322:89-100.
Available:https://doi.org/10.1016/j.geoderma.2018.02.016.
Chen Y, Barak P. Iron nutrition of plants in calcareous soils. Adv Agron. 1982;35: 217–240.
Available:https://doi.org/10.1016/S0065-2113(08)60326-0.
Monfort-Salvador I, García-Montero LG, Grande MA. Impact of calcium associated to calcareous amendments on ectomycorrhizae in forests: A review. Journal of Soil Science and Plant Nutrition. 2015;15(1):217-231.
Available: http://dx.doi.org/10.4067/S0718-95162015005000018.
Tyler G. Mineral nutrient limitation of calcifuge plants in phosphate sufficient limestone soil. Ann Bot. 1996;77(6): 649–656. Available:https://doi.org/10.1093/aob/77.6.649.
Konrad M. Iron availability in plant tissues-iron chlorosis on calcareous soils. Plant and Soil. 1994;165:275–283.
Available:https://link.springer.com/content/pdf/10.1007/BF00008070.pdf
Navarro-Fernández CM, Aroca R, Barea JM. Influence of arbuscular mycorrhizal fungi and water regime on the development of endemic Thymus species in dolomitic soils. Applied Soil Ecology. 2011;48(1):31-37.
Available:https://doi.org/10.1016/j.apsoil.2011.02.00.
Zhang R, Qin X, Chen H, Chan BPL, Xing F, Xu Z. Phytogeography and floristic affinities of the limestone flora of Mt. Exianling, Hainan Island, China. The Botanical Review. 2017;83(1):38–58.
Available:https://doi.org/10.1007/s12229-017-9176-3.
Lapeyrie F. The role of ectomycorrhizal fungi in calcareous soil tolerance by "symbiocalcicole" woody plants. Ann. For. Sci. 1990;47:579-589. Available:https://doi.org/10.1051/forest:19900604.
Mundra S, Bahram M, Tedersoo L, Kauserud H, Halvorsen R, Eidesen PB. Temporal variation of Bistorta vivipara‐associated ectomycorrhizal fungal communities in the High Arctic. Molecular Ecology. 2015;24:6289-6302.
Available:https://doi.org/10.1111/mec.13458.
Smith SE, Read DJ. Mycorrhizal symbiosis, 3rd edition. San Diego: Academic Press; 2010.
Urban A, Puschenreiter M, Strauss J, Gorfer M. Diversity and structure of ectomycorrhizal and co-associated fungal communities in a serpentine soil. Mycorrhiza. 2008;18:339–354. DOI: 10.1007/s00572-008-0189-y.
Koizumi T, Hattori M, Nara K. Ectomycorrhizal fungal communities in alpine relict forests of Pinus pumila on Mt. Norikura, Japan. Mycorrhiza. 2018;28(2): 129–145. Available:https://doi.org/10.1007/s00572-017-0817-5.
Arai H, Tamai Y, Yajima T, Obase K, Miyamoto T. Ectomycorrhizal fungal communities associated with Quercus dentata in a coastal broadleaf forest. Mycosphere. 2017;8(4):561–567. DOI:10.5943/mycosphere/8/4/5.
Ström L, Owen AG, Godbold DL, Jones DL. Organic acid behavior in a calcareous soil: Sorption reactions and biodegradation rates. Soil Biol. Biochem. 2001;33(15): 2125–2133. Available:https://doi.org/10.1016/S0038-0717(01)00146-8.
Wallander H. Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant and Soil. 2000;218:249–256. Available:https://link.springer.com/content/pdf/10.1023/A:1014936217105.pdf
Tyler G. Some ecophysiological and historical approaches to species richness and calcicole/calcifuge behavior– contribution to a debate. Folia Geobot. 2003;38:419–428.
Available:https://link.springer.com/content/pdf/10.1007/BF02803249.pdf
Baier R, Ingenhaag J, Blaschke H, Göttlein A, Agerer R. Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps. Mycorrhiza. 2006;16(3): 197–206. DOI:10.1007/s00572-006-0035-z.
Harrington TJ, Mitchell DT. Ectomycorrhizas associated with a relict population of Dryas octopetala in the Burren, Western Ireland. I. Distribution of ectomycorrhizas in relation to vegetation and soil characteristics. Mycorrhiza. 2005; 15(6):425-433. DOI:10.1007/s00572-005-0347-4.
Leberecht M, Tu J, Polle A. Acid and calcareous soils affect nitrogen nutrition and organic nitrogen uptake by beech seedlings (Fagus sylvatica L.) under drought, and their ectomycorrhizal community structure. Plant and Soil. 2016;409:143–157. DOI:10.1007/s11104-016-2956-4.
Marino ED, Montecchio L, Scattolin L, Abs C, Agerer R. The ectomycorrhizal community structure in European Beech Forests differing in coppice shoot age and stand features. Journal of Forestry. 2009;107(5):250-259.
Available:https://doi.org/10.1093/jof/107.5.250.
Timling I, Dahlberg A, Walker DA, Gardes M, Charcosset JY, Welker JM, Taylor DL. Distribution and drivers of ectomycorrhizal fungal communities across the North American Arctic. Ecosphere. 2012; 3(11):1-25.
Available:https://doi.org/10.1890/ES12-00217.1.
Anne H, Bryan V, Magali D, Marc D, Antoine G, Farid J, Laure H, Fabian C, Emmanuel F, Philippe J. Ectomycorrhizal communities associated with the Legume Acacia spirorbis growing on contrasted edaphic constraints in New Caledonia. Microbial Ecology. 2018;76:964–975. Available:https://doi.org/10.1007/s00248-018-1193-1.
Fan YJ, Grebenc T, Wei J, Zhao YL, Yan W, Wang LB. Association of ectomycorrhizal fungi with Picea crassifolia (Pinaceae, Piceoidae) from high-altitude stands in Mount Helan Nature Reserve, China. Genetics and Molecular Research. 2016;15(3). Available:http://dx.doi.org/10.4238/gmr.15038604.
Watanabe S, Sato K. The limestone flora of Mt. Kirigishi, Pref. Sorachi, Hokkaido (1). The Journal of Geobotany. 1971; 19(1–2):7–15. Japanese.
Available:https://kanazawa-u.repo.nii.ac.jp/ ?action=repository_uri&item_id=12324&file_id=26&file_no=1
Watanabe S,Sato K. The limestone flora of Mt. Kirigishi, Pref. Sorachi, Hokkaido (2). The Journal of Geobotany. 1971;47(2): 149–154. Japanese. Available:https://kanazawa-u.repo.nii. ac.jp /?action=repository_uri&item_id=12313&file_id=26&file_no=1
Ishida TA, Nara K,Hogetsu T. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol. 2007;174(2):430–440.
Available:https://doi.org/10.1111/j.1469-8137.2007.02016.x.
Nara K, Nakaya H, Wu B, Zhou Z, Hogetsu T. Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytol. 2003;159(3): 743–756.
Available:https://doi.org/10.1046/j.1469-8137.2003.00844.x.
Gardes M, Bruns TD. ITS primers with enhanced specificity for Basidiomycetes–application to the identification of mycorrhizae and rusts. Mol Ecol. 1993; 2(2):113–118. Available: https://doi.org/10.1111/j.1365-294X.1993.tb00005.x.
White TJ, Bruns T, Lee S, Taylor F. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: A guide to methods and applications. Berkeley: Academic Press; 1990.
Hothorn T, Hornik K, van de Wiel MA, Zeileis A. A lego system for conditional inference. The American Statistician. 2006;60(3):257-263. Available:https://doi.org/10.1198/000313006X118430
Bray JR, Curtis JT. An ordination of upland forest communities of Southern Wisconsin. Ecological Monographs. 1957;27:325–349. Available: https://doi.org/10.2307/1942268.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. Community Ecology Package; 2019.
Available:https://cran.r-project.org, https://github.com/vegandevs/vegan.
Legendre P, Legendre L. Numerical ecology, 2nd English edition. Amsterdam: Elsevier Science BV; 1998.
Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Research. 1967;27: 209–220. Available:https://aacrjournals.org/cancerres/article-pdf/27/2_Part_1/209/2382183/cr0272p10209.pdf
Clarke KR. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology. 1993;18:117–143. Available:https://doi.org/10.1111/j.1442-9993.1993.tb00438.x.
Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CX, Chazdon RL, Longino JT. Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. Journal of Plant Ecology. 2012;5(1):3–21. Available:https://doi.org/10.1093/jpe/rtr044.
Miyamoto Y, Nakano T, Hattori M, Nara K. The mid-domain effect in ectomycorrhizal fungi: Range overlap along an elevation gradient on Mount Fuji, Japan. The ISME Journal. 2014;8:1739–1746.
Available:https://www.nature.com/articles/ismej201434.pdf
Yamamoto K, Endo N, Degawa Y, Fukuda M and Yamada A. First detection of Endogone ectomycorrhizas in natural oak forests. Mycorrhiza. 2017;27:295–301.
DOI:10.1007/s00572-016-0740-1.
Kagawa A, Fujiyoshi M, Tomita M, Masuzawa T. Mycorrhizal status of alpine plant communities on Mt. Maedake Cirque in the Japan South Alps. Polar Biosci. 2006;20:92–102.
Available:http://id.nii.ac.jp/1291/00006263/.
Catarina MKM, Igarashi T, Shibuya M. Occurrence and types of ectomycorrhizae present in seedlings of Picea glehnii in a natural forest in Hokkaido. Mycoscience. 1995;36(3):335–339.
Available:https://doi.org/10.1007/BF02268609.
Lang C, Polle A. Ectomycorrhizal fungal diversity, tree diversity and root nutrient relations in a mixed Central European forest. Tree Physiology. 2011;31(5): 531–538. DOI:10.1093/treephys/tpr042.
Mundra S, Bahram M, Eidesen PB. Alpine bistort (Bistorta vivipara) in edge habitat associates with fewer but distinct ectomycorrhizal fungal species: A comparative study of three contrasting soil environments in Svalbard. Mycorrhiza. 2016;26(8):809-818. DOI:10.1007/s00572-016-0716-1.
Danielson RM, Visser S. Effects of forest soil acidification on ectomycorrhizal and vesicular–arbuscular mycorrhizal development. New Phytologist. 1989; 112(1):41–49. Available:https://doi.org/10.1111/j.1469-8137.1989.tb00306.x.
Sato K. Alpine flora of Hokkaido. Sapporo: The publishing association of Hokkaido University; 2007. Japanese.
Kayama M, Yamanaka T. Growth characteristics of ectomycorrhizal seedlings of Quercus glauca, Quercus salicina, Quercus myrsinaefolia and Castanopsis cuspidata planted in Calcareous Soil. Forests. 2016;7(11): 266.
Available:https://doi.org/10.3390/f7110266.
Miyamoto Y, Narimatsu M, Nara K. Effects of climate, distance and a geographic barrier on ectomycorrhizal fungal communities in Japan: A comparison across Blakiston's Line. Fungal Ecology. 2018;33:125-133.
Available:https://doi.org/10.1016/j.funeco.2018.01.007.
Ursic KA, Kenkel NC, Larson DW. Revegetation dynamics of cliff faces in abandoned limestone quarries. Journal of Applied Ecology. 1997;34(2):289-303. Available:https://doi.org/10.2307/2404877.
-
Abstract View: 31 times
PDF Download: 16 times